Contents

核図表 tables of nuclides

元素の同位体を含めた図です。 赤は安定同位体、緑は半減期が1日以上の不安定同位体です。2,8,20,28,50,82,126は原子核の魔法数です。

close all;
n=0;
n=n+1;Z{n}='H'; Isomer{n}=1:7;
n=n+1;Z{n}='He';Isomer{n}=2:10;
n=n+1;Z{n}='Li';Isomer{n}=4:12;
n=n+1;Z{n}='Be';Isomer{n}=5:14;
n=n+1;Z{n}='B';Isomer{n}=7:19;
n=n+1;Z{n}='C';Isomer{n}=8:22;
n=n+1;Z{n}='N';Isomer{n}=10:24;
n=n+1;Z{n}='O';Isomer{n}=12:26;
n=n+1;Z{n}='F';Isomer{n}=14:29;
n=n+1;Z{n}='Ne';Isomer{n}=15:32;

n=n+1;Z{n}='Na';Isomer{n}=18:35;
n=n+1;Z{n}='Mg';Isomer{n}=20:38;
n=n+1;Z{n}='Al';Isomer{n}=21:41;
n=n+1;Z{n}='Si';Isomer{n}=22:42;
n=n+1;Z{n}='P';Isomer{n}=24:46;
n=n+1;Z{n}='S';Isomer{n}=29:45;
n=n+1;Z{n}='Cl';Isomer{n}=31:46;
n=n+1;Z{n}='Ar';Isomer{n}=33:47;
n=n+1;Z{n}='K';Isomer{n}=35:50;
n=n+1;Z{n}='Ca';Isomer{n}=37:50;

n=n+1;Z{n}='Sc';Isomer{n}=40:51;
n=n+1;Z{n}='Ti';Isomer{n}=41:53;
n=n+1;Z{n}='V';Isomer{n}=44:55;
n=n+1;Z{n}='Cr';Isomer{n}=45:57;
n=n+1;Z{n}='Mn';Isomer{n}=48:59;
n=n+1;Z{n}='Fe';Isomer{n}=49:62;
n=n+1;Z{n}='Co';Isomer{n}=51:64;
n=n+1;Z{n}='Ni';Isomer{n}=53:68;
n=n+1;Z{n}='Cu';Isomer{n}=55:70;
n=n+1;Z{n}='Zn';Isomer{n}=57:77;

n=n+1;Z{n}='Ga';Isomer{n}=59:83;
n=n+1;Z{n}='Ge';Isomer{n}=61:84;
n=n+1;Z{n}='As';Isomer{n}=68:87;
n=n+1;Z{n}='Se';Isomer{n}=68:89;
n=n+1;Z{n}='Br';Isomer{n}=72:92;
n=n+1;Z{n}='Kr';Isomer{n}=[72:95,97];
n=n+1;Z{n}='Rb';Isomer{n}=74:99;
n=n+1;Z{n}='Sr';Isomer{n}=77:99;
n=n+1;Z{n}='Y';Isomer{n}=[81:100,102];
n=n+1;Z{n}='Zr';Isomer{n}=81:102;

n=n+1;Z{n}='Nb';Isomer{n}=[84,86:106];
n=n+1;Z{n}='Mo';Isomer{n}=87:108;
n=n+1;Z{n}='Tc';Isomer{n}=90:110;
n=n+1;Z{n}='Ru';Isomer{n}=92:113;
n=n+1;Z{n}='Rh';Isomer{n}=95:114;
n=n+1;Z{n}='Pd';Isomer{n}=97:118;
n=n+1;Z{n}='Ag';Isomer{n}=99:123;
n=n+1;Z{n}='Cd';Isomer{n}=[100:122,124];
n=n+1;Z{n}='In';Isomer{n}=104:132;
n=n+1;Z{n}='Sn';Isomer{n}=107:134;

n=n+1;Z{n}='Sb';Isomer{n}=110:136;
n=n+1;Z{n}='Te';Isomer{n}=[107:109,111:138];
n=n+1;Z{n}='I';Isomer{n}=115:142;
n=n+1;Z{n}='Xe';Isomer{n}=[113,115:145];
n=n+1;Z{n}='Cs';Isomer{n}=116:146;
n=n+1;Z{n}='Ba';Isomer{n}=[119,121:146];
n=n+1;Z{n}='La';Isomer{n}=125:148;
n=n+1;Z{n}='Ce';Isomer{n}=129:151;
n=n+1;Z{n}='Pr';Isomer{n}=132:151;
n=n+1;Z{n}='Nd';Isomer{n}=[134:152,154];

n=n+1;Z{n}='Pm';Isomer{n}=137:154;
n=n+1;Z{n}='Sm';Isomer{n}=137:157;
n=n+1;Z{n}='Eu';Isomer{n}=139:160;
n=n+1;Z{n}='Gd';Isomer{n}=142:162;
n=n+1;Z{n}='Tb';Isomer{n}=146:164;
n=n+1;Z{n}='Dy';Isomer{n}=147:167;
n=n+1;Z{n}='Ho';Isomer{n}=150:170;
n=n+1;Z{n}='Er';Isomer{n}=150:173;
n=n+1;Z{n}='Tm';Isomer{n}=[151,153:176];
n=n+1;Z{n}='Yb';Isomer{n}=[154:158,160:178];

n=n+1;Z{n}='Lu';Isomer{n}=[155,156,161,162,164:180];
n=n+1;Z{n}='Hf';Isomer{n}=[157:161,166:185];
n=n+1;Z{n}='Ta';Isomer{n}=166:186;
n=n+1;Z{n}='W';Isomer{n}=[162:166,170:190];
n=n+1;Z{n}='Re';Isomer{n}=[170,172,174:192];
n=n+1;Z{n}='Os';Isomer{n}=169:196;
n=n+1;Z{n}='Ir';Isomer{n}=171:198;
n=n+1;Z{n}='Pt';Isomer{n}=173:201;
n=n+1;Z{n}='Au';Isomer{n}=[175:179,181:204];
n=n+1;Z{n}='Hg';Isomer{n}=177:206;

n=n+1;Z{n}='Tl';Isomer{n}=184:210;
n=n+1;Z{n}='Pb';Isomer{n}=185:214;
n=n+1;Z{n}='Bi';Isomer{n}=189:215;
n=n+1;Z{n}='Po';Isomer{n}=193:218;
n=n+1;Z{n}='At';Isomer{n}=194:219;
n=n+1;Z{n}='Rn';Isomer{n}=200:226;
n=n+1;Z{n}='Fr';Isomer{n}=203:229;
n=n+1;Z{n}='Ra';Isomer{n}=206:230;
n=n+1;Z{n}='Ac';Isomer{n}=209:232;
n=n+1;Z{n}='Th';Isomer{n}=213:236;

n=n+1;Z{n}='Pa';Isomer{n}=[216,222:238];
n=n+1;Z{n}='U';Isomer{n}=226:240;
n=n+1;Z{n}='Np';Isomer{n}=228:241;
n=n+1;Z{n}='Pu';Isomer{n}=232:246;
n=n+1;Z{n}='Am';Isomer{n}=[232,234:247];
n=n+1;Z{n}='Cm';Isomer{n}=236:251;
n=n+1;Z{n}='Bk';Isomer{n}=239:254;
n=n+1;Z{n}='Cf';Isomer{n}=240:256;
n=n+1;Z{n}='Es';Isomer{n}=241:257;
n=n+1;Z{n}='Fm';Isomer{n}=242:259;

n=n+1;Z{n}='Md';Isomer{n}=248:260;
n=n+1;Z{n}='No';Isomer{n}=250:262;
n=n+1;Z{n}='Lr';Isomer{n}=252:263;
n=n+1;Z{n}='Rf';Isomer{n}=253:264;
n=n+1;Z{n}='Db';Isomer{n}=255:265;
n=n+1;Z{n}='Sg';Isomer{n}=258:266;
n=n+1;Z{n}='Bh';Isomer{n}=260:267;
n=n+1;Z{n}='Hs';Isomer{n}=263:269;
n=n+1;Z{n}='Mt';Isomer{n}=265:271;
n=n+1;Z{n}='Ds';Isomer{n}=267:272;

n=n+1;Z{n}='Rg';Isomer{n}=272;
% 安定同位体
n=0;
n=n+1;Isomer1{n}=1:2;
n=n+1;Isomer1{n}=3:4;
n=n+1;Isomer1{n}=6:7;
n=n+1;Isomer1{n}=9;
n=n+1;Isomer1{n}=10:11;
n=n+1;Isomer1{n}=12:13;
n=n+1;Isomer1{n}=14:15;
n=n+1;Isomer1{n}=16:18;
n=n+1;Isomer1{n}=19;
n=n+1;Isomer1{n}=20:22;

n=n+1;Isomer1{n}=23;
n=n+1;Isomer1{n}=24:26;
n=n+1;Isomer1{n}=27;
n=n+1;Isomer1{n}=28:30;
n=n+1;Isomer1{n}=31;
n=n+1;Isomer1{n}=[32:34,36];
n=n+1;Isomer1{n}=[35,37];
n=n+1;Isomer1{n}=[36,38,40];
n=n+1;Isomer1{n}=[39,41];
n=n+1;Isomer1{n}=[40,42:44,46,48];

n=n+1;Isomer1{n}=45;
n=n+1;Isomer1{n}=46:50;
n=n+1;Isomer1{n}=51;
n=n+1;Isomer1{n}=[50,52:54];
n=n+1;Isomer1{n}=55;
n=n+1;Isomer1{n}=[54,56:58];
n=n+1;Isomer1{n}=59;
n=n+1;Isomer1{n}=[58,60:62,64];
n=n+1;Isomer1{n}=[63,65];
n=n+1;Isomer1{n}=[64,66:68,70];

n=n+1;Isomer1{n}=[69,71];
n=n+1;Isomer1{n}=[70,72:74,76];
n=n+1;Isomer1{n}=75;
n=n+1;Isomer1{n}=[74,76:78,80,82];
n=n+1;Isomer1{n}=[79,81];
n=n+1;Isomer1{n}=[78,80,82:84,86];
n=n+1;Isomer1{n}=85;
n=n+1;Isomer1{n}=[84,86:88];
n=n+1;Isomer1{n}=89;
n=n+1;Isomer1{n}=[90:92,94,96];

n=n+1;Isomer1{n}=93;
n=n+1;Isomer1{n}=[92,94:98,100];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[96,98:102,104];
n=n+1;Isomer1{n}=103;
n=n+1;Isomer1{n}=[102,104:106,108,110];
n=n+1;Isomer1{n}=[107,109];
n=n+1;Isomer1{n}=[106,108,110:112,114,116];
n=n+1;Isomer1{n}=113;
n=n+1;Isomer1{n}=[112,114:120,122,124];

n=n+1;Isomer1{n}=[121,123];
n=n+1;Isomer1{n}=[120,122,124:126,128,130];
n=n+1;Isomer1{n}=127;
n=n+1;Isomer1{n}=[124,126,128:132,134,136];
n=n+1;Isomer1{n}=133;
n=n+1;Isomer1{n}=[130,132,134:138];
n=n+1;Isomer1{n}=139;
n=n+1;Isomer1{n}=[136,138,140];
n=n+1;Isomer1{n}=141;
n=n+1;Isomer1{n}=[142:146,148,150];

n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[144,150,152,154];
n=n+1;Isomer1{n}=[151,153];
n=n+1;Isomer1{n}=[154:158,160];
n=n+1;Isomer1{n}=159;
n=n+1;Isomer1{n}=[158,160:164];
n=n+1;Isomer1{n}=165;
n=n+1;Isomer1{n}=[162,164,166:168,170];
n=n+1;Isomer1{n}=169;
n=n+1;Isomer1{n}=[168,170:174,176];

n=n+1;Isomer1{n}=175;
n=n+1;Isomer1{n}=176:180;
n=n+1;Isomer1{n}=[180,181];%maybe 180,too
n=n+1;Isomer1{n}=[180,182:184,186];
n=n+1;Isomer1{n}=185;
n=n+1;Isomer1{n}=[184,187:190,192];
n=n+1;Isomer1{n}=[191,193];
n=n+1;Isomer1{n}=[192,194:196,198];
n=n+1;Isomer1{n}=197;
n=n+1;Isomer1{n}=[196,198:202,204];

n=n+1;Isomer1{n}=[203,205];
n=n+1;Isomer1{n}=206:208;
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];

n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];

n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];
n=n+1;Isomer1{n}=[];

n=n+1;Isomer1{n}=[];
% 半減期1日以上
n=0;
n=n+1;Isomer2{n}=3;
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[7,10];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=14;
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];

n=n+1;Isomer2{n}=22;
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=26;
n=n+1;Isomer2{n}=32;
n=n+1;Isomer2{n}=[32,33];
n=n+1;Isomer2{n}=35;
n=n+1;Isomer2{n}=36;
n=n+1;Isomer2{n}=[37,39,42];
n=n+1;Isomer2{n}=40;
n=n+1;Isomer2{n}=[41,45,47];

n=n+1;Isomer2{n}=[44,46:48];
n=n+1;Isomer2{n}=44;
n=n+1;Isomer2{n}=48:50;
n=n+1;Isomer2{n}=51;
n=n+1;Isomer2{n}=52:54;
n=n+1;Isomer2{n}=[55,59,60];
n=n+1;Isomer2{n}=[56:58,60];
n=n+1;Isomer2{n}=[56,57,59,63,66];
n=n+1;Isomer2{n}=67;
n=n+1;Isomer2{n}=[65,72];

n=n+1;Isomer2{n}=67;
n=n+1;Isomer2{n}=[68,69,71];
n=n+1;Isomer2{n}=[71:74,76,77];
n=n+1;Isomer2{n}=[72,75,79];
n=n+1;Isomer2{n}=[77,82];
n=n+1;Isomer2{n}=[79,81,85];
n=n+1;Isomer2{n}=[83,84,86,87];
n=n+1;Isomer2{n}=[82,83,85,89,90];
n=n+1;Isomer2{n}=[87,88,90,91];
n=n+1;Isomer2{n}=[88,89,93,95];

n=n+1;Isomer2{n}=[91,92,94,95];
n=n+1;Isomer2{n}=[93,99];
n=n+1;Isomer2{n}=96:99;
n=n+1;Isomer2{n}=[97,103,105,106];
n=n+1;Isomer2{n}=[99,101,102,105];
n=n+1;Isomer2{n}=[100,103,107];
n=n+1;Isomer2{n}=[105,111];
n=n+1;Isomer2{n}=[109,113,115];
n=n+1;Isomer2{n}=[111,115];
n=n+1;Isomer2{n}=[113,121,123,125,126];

n=n+1;Isomer2{n}=[119,122,124:127];
n=n+1;Isomer2{n}=[118,121,123,132];
n=n+1;Isomer2{n}=[124:126,129,131];
n=n+1;Isomer2{n}=[127,133];
n=n+1;Isomer2{n}=[129,131,132,134:137];
n=n+1;Isomer2{n}=[128,131,133,140];
n=n+1;Isomer2{n}=[137,138,140];
n=n+1;Isomer2{n}=[134,137,139,141:144];
n=n+1;Isomer2{n}=143;
n=n+1;Isomer2{n}=[140,144,147];

n=n+1;Isomer2{n}=[143:149,151];
n=n+1;Isomer2{n}=[145:149,151,153];
n=n+1;Isomer2{n}=[145:149,152,154:156];
n=n+1;Isomer2{n}=146:153;
n=n+1;Isomer2{n}=[153,155:158,160,161];
n=n+1;Isomer2{n}=[154,156,159,166];
n=n+1;Isomer2{n}=[163,166];
n=n+1;Isomer2{n}=[160,169,172];
n=n+1;Isomer2{n}=[165,167,168,170:172];
n=n+1;Isomer2{n}=[166,169,175];

n=n+1;Isomer2{n}=[169:174,176,177];
n=n+1;Isomer2{n}=[178,181,185,188];
n=n+1;Isomer2{n}=[177,179,180,182,183];
n=n+1;Isomer2{n}=[178,181,185,188];
n=n+1;Isomer2{n}=[182:184,186,187,189];
n=n+1;Isomer2{n}=[185,186,193,194];
n=n+1;Isomer2{n}=[188:190,192];
n=n+1;Isomer2{n}=[188,190,191,193];
n=n+1;Isomer2{n}=[194:196,198,199];
n=n+1;Isomer2{n}=[194,197,203];

n=n+1;Isomer2{n}=[200:202,204];
n=n+1;Isomer2{n}=[202:205,210];
n=n+1;Isomer2{n}=[205:207,209,210];
n=n+1;Isomer2{n}=[205:207,209,210];
n=n+1;Isomer2{n}=215;
n=n+1;Isomer2{n}=222;
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[223:226,228];
n=n+1;Isomer2{n}=225:227;
n=n+1;Isomer2{n}=[227:232,234];

n=n+1;Isomer2{n}=229:234;
n=n+1;Isomer2{n}=230:238;
n=n+1;Isomer2{n}=234:239;
n=n+1;Isomer2{n}=[236:242,244,246];
n=n+1;Isomer2{n}=[240,241,243];
n=n+1;Isomer2{n}=[240:248,250];
n=n+1;Isomer2{n}=245:249;
n=n+1;Isomer2{n}=[246,248:254];
n=n+1;Isomer2{n}=251:255;
n=n+1;Isomer2{n}=[252,253,257];

n=n+1;Isomer2{n}=258;
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];
n=n+1;Isomer2{n}=[];

n=n+1;Isomer2{n}=[];

figure('name','tables of nuclides','numbertitle','off','color',[1,1,1]);
set(gcf,'position',[50,50,720,540]);
for n=1:length(Isomer)
    plot(Isomer{n},n*ones(1,length(Isomer{n})),'b.','tag','isomer');
    if n==1;hold on;end;
    plot(Isomer2{n},n*ones(1,length(Isomer2{n})),'go','tag','isomer2');
    plot(Isomer1{n},n*ones(1,length(Isomer1{n})),'ro','tag','isomer1');
    if n==1;
        L=legend('all isomer','half life > 1 day','stable isomer');
        set(L,'position',[0.2,0.7,0.25,0.15]);
    end;
end;
set(findobj(gcf,'tag','isomer2'),'MarkerFacecolor',[0,1,0],'MarkerEdgeColor',[0,1,0]);
set(findobj(gcf,'tag','isomer1'),'MarkerFaceColor',[1,0,0],'MarkerEdgeColor',[1,0,0]);
title('Tables of Nuclides');
ylabel('proton');xlabel('neutron');
tick=[2,8,20,28,50,82,126];
set(gca,'xtick',tick,'ytick',tick);grid on;
axis tight;

Co60あたりの核図表

Co60あたりを拡大したものと、Latexを使って元素記号で表示したものを示します。

for n=20:35
    text(Isomer{n}(end),n,Z{n},'FontSize',15,'FontWeight','bold');
end;
set(gca,'ylim',[20,35],'xlim',[35,95]);

figure('color',[1,1,1],'position',[50,50,1000,200]);
for n=25:32
    for m=1:length(Isomer{n})
        N=Isomer{n}(m);
        st=sprintf('$$ ^{%d} _{%d}$$',N,n);
        h=text(N,n,[st,Z{n}],'interpreter','latex','color',[0,0,1]);hold on;
        if ismember(N,Isomer2{n});set(h,'color',[0,0.5,0]);end;
        if ismember(N,Isomer1{n});set(h,'color',[1,0,0]);end;
    end;
end;
set(gca,'ylim',[25,32],'xlim',[49,85],'position',[0.05,0.05,0.9,0.9]);
axis off;